Effectiveness of 3VQM in Capturing Depth Inconsistencies

Dogancan Temel and Ghassan AlRegib

Multimedia and Sensors Lab (MSL)
School of Electrical and Computer Engineering
Georgia Institute of Technology
June 10, 2013
1. A 3D Video Quality Measure (3VQM)
2. Validation of 3VQM
3. Performance Evaluation of 3VQM
A 3D Video Quality Measure (3VQM)

D. Temel
A 3D Video Quality Measure (3VQM)
A 3D Video Quality Measure (3VQM)

3D Wrapping

\[X_v = X_r + s \frac{F_vB}{Z} + h, \quad h = -s \frac{FB}{Z_c} \]

\[X_o = X_r + s \frac{F_vB}{Z_{ideal}} + h, \]

\[Z_{ideal} = \frac{sF_vB}{(X_o - X_v) + s \frac{F_vB}{Z}} \]

\[Z_{ideal} \approx \frac{sF_vB}{\alpha(I_0 - I_v) + s \frac{F_vB}{Z}} \]
\[\Delta Z = |Z_{\text{ideal}} - Z| \]

Spatial Outliers (SO)

\[\text{STD}(\Delta Z) \]

Temporal Outliers (TO)

\[\text{STD}(\Delta Z_K - \Delta Z_{K-1}) \]

Temporal Inconsistencies (TI)

\[\text{STD}(Z_K - Z_{K-1}) \]

3VQM

\[K(1 - SO(SO \cap TO))^a(1 - TI)^b(1 - TO)^c \]
1. A 3D Video Quality Measure (3VQM)
2. Validation of 3VQM
3. Performance Evaluation of 3VQM
Validation of 3VQM

<table>
<thead>
<tr>
<th></th>
<th>RMSE</th>
<th>CC</th>
<th>ROCC</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average PSNR</td>
<td>0.95</td>
<td>0.73</td>
<td>0.72</td>
<td>0.82</td>
</tr>
<tr>
<td>Weighted Average PSNR</td>
<td>0.94</td>
<td>0.76</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td>Average SSIM</td>
<td>0.81</td>
<td>0.60</td>
<td>0.54</td>
<td>0.62</td>
</tr>
<tr>
<td>3VQM</td>
<td>0.62</td>
<td>0.89</td>
<td>0.79</td>
<td>0.52</td>
</tr>
</tbody>
</table>

RMSE: Root Mean Squared Error
CC: Pearson Linear Correlation Coefficient
ROCC: Spearman Rank Order Correlation Coefficient
MAE: Mean Absolute Error

Low RMSE: Accuracy
High CC: Coherency
High ROCC: Coherency
Low MAE: Accuracy
Validation of 3VQM

<table>
<thead>
<tr>
<th>OR: Outlier Ratio</th>
<th>Low OR: Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average PSNR</td>
<td>0.19</td>
</tr>
<tr>
<td>Weighted Average PSNR</td>
<td>0.19</td>
</tr>
<tr>
<td>Average SSIM</td>
<td>0.13</td>
</tr>
<tr>
<td>3 VQM</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Outline

1. A 3D Video Quality Measure (3VQM)
2. Validation of 3VQM
3. Performance Evaluation of 3VQM
Performance Evaluation of 3VQM

Blur
Gaussian Blur Kernel

<table>
<thead>
<tr>
<th>Kernel Size / Standard deviation</th>
<th>σ_1</th>
<th>σ_2</th>
<th>σ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>7x7</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>19x19</td>
<td>10</td>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>

Compression
Type: H.264, Coding method: Entropy

| Quantization Parameter (QP) | 28 | 40 | 50 |

Transmission
Model: Gilbert Elliot

| Packet Loss Rate | 2 % | 5 % | 10 % |
Performance Evaluation of 3VQM

Blurred Images

Depth

PSNR

Blur levels

Balloons
Champagne
Kendo
Lovebird
Pantomime

Color

PSNR

Blur levels

Balloons
Champagne
Kendo
Lovebird
Pantomime

3VQM

Blur levels

Balloons
Champagne
Kendo
Lovebird
Pantomime
Performance Evaluation of 3VQM

Comprehension

PSNR

- Depth
- Color

3VQM

- Balloons
- Champagne
- Kendo
- Lovebird
- Pantomime
Performance Evaluation of 3VQM

Transmission

PSNR

Depth

Color

3VQM

D. Temel
To summarize

3VQM is

- Accurate
- Coherent
- Consistent

3VQM is sensitive to

- Compression artifacts in color video
- Transmission artifacts

3VQM is not sensitive to

- Blurring artifacts
- Compression artifacts in depth
Questions

For more information and related work:
http://www.ece.gatech.edu/research/labs/msl/